

Feasibility of port from Android
to Blackberry

- Möjligheten att porta från Android till Blackberry

LTH School of Engineering at Campus Helsingborg

Computer Engineering

Bachelor thesis:
Joen Jönsson

© Copyright Joen Jönsson

LTH School of Engineering
Lund University
Box 882
SE-251 08 Helsingborg
Sweden

LTH Ingenjörshögskolan vid Campus Helsingborg
Lunds universitet
Box 882
251 08 Helsingborg

Printed in Sweden
Media-Tryck
Biblioteksdirektionen
Lunds universitet
Lund 2011

Abstract

The mBlox Device Software, MDS, is a library that developers integrate into
their applications to expose an API on the internet to access resources on a
mobile device, such as an Android smart-phone. This report discusses the
possibility to port the existing implementation of the mBlox Device Service
from the Android Platform to the Blackberry Platform.
In the time that was given a very much working version of the MDS was
implemented, though it is not fully tested a lot of the functionality do work, at
least when all parameters are correct. This is what a proof of concept solution
is all about.
The conclusion is that since both platforms are using Java for their
applications a port of an application without a user interface is fairly easy, and
because both platforms support multitasking the design can stay roughly the
same. The main difference for applications or libraries without an UI, like the
MDS, is the differences between Java Micro Edition and Java Standard
Edition. However if an application does have an UI the differences are more
noticeable, a developer should follow the UI guidelines for the particular
platform and they are different on both platforms.
All the goals that were set up was fulfilled.

Keywords: Blackberry, Android, Port

Sammanfattning

mBlox Device Software, MDS, är ett bibliotek som utvecklare inkorporerar i
sina applikationer för att synliggöra ett API på internet som gör det möjligt att
komma åt resurser från en telefon, till exempel en Android telefon. Rapporten
diskuterar möjligheten att porta mBlox Device Software från
Androidplatformen till Blackberryplatformen.
Av den tiden som gavs blev en fungerande version av MDS implementerad,
även om den inte är fullt testad fungerar den om alla parametrar är korrekta.
Det är detta en Proof of Concept lösning handlar om.
Slutsatsen är att eftersom båda bygger på Javaplatformen är en portning av ett
system utan ett grafiskt gränssnitt relativt enkelt och eftersom båda
plattformarna stödjer multikörning kan designad vara väldigt lik.
Huvudskillnaden för en applikation eller ett bibliotek utan ett grafiskt
gränssnitt, som MDS, är skillnaden mellan Java Micro Edition och Java
Standard Edition. Ska en applikation däremot ha ett grafiskt gränssnitt så blir
skillnaderna mer påtagliga. En utvecklare ska alltid försöka följa riktlinjerna
som finns om hur man designar ett gränssnitt för just den plattformar.
Alla mål som sattes upp nåddes.

Nyckelord: Blackberry, Android, Portning

Foreword

I would like to thank the guys at Mashmobile who helped me complete this
bachelor thesis. I would also like to thank Christian for supervising the thesis.

List of contents

1 Introduction ... 1	

1.1 Background .. 1	

1.2 Mashmobile ... 1	

1.3 Purpose and Goal ... 2	

1.4 Problem Formulation ... 2	

1.5 Limitation .. 3	

1.6 Method of work ... 3	

1.7 The report .. 3	

2 Background ... 4	

2.1 Blackberry ... 4	

2.1.1 Description ... 4	

2.1.2 Integration .. 4	

2.1.3 Blackberry Enterprise Server ... 5	

2.1.4 Blackberry Internet Service ... 5	

2.1.5 Blackberry PIN ... 5	

2.2 mBlox Device Software .. 6	

2.2.1 Description ... 6	

2.3 mBlox Web API ... 6	

2.4 Blackberry and Android ... 7	

2.4.1 Java Micro Edition ... 7	

2.4.2 Java Standard Edition ... 7	

2.4.3 Difference between Java ME and Java SE 7	

2.4.4 Android API ... 8	

2.4.5 Blackberry API ... 8	

2.5 Push Technology ... 8	

3 Study of the mBlox Device Software .. 9	

3.1 An application using MDS ... 9	

3.2 RichPush Plug-in .. 10	

3.3 Android version .. 10	

4 Study of the Blackberry platform .. 13	

4.1 Background application .. 13	

4.1.1 The problem .. 13	

4.1.2 Solution .. 13	

4.2 Connectivity .. 13	

4.2.1 The problem .. 13	

4.2.2 Solution .. 13	

4.3 Registration to Mnet ... 14	

4.3.1 The problem .. 14	

4.3.2 Solution .. 14	

4.4 Security ... 14	

4.4.1 The problem .. 14	

4.4.2 Solution ... 14	

4.5 Blackberry Push .. 16	

4.5.1 The problem .. 16	

4.5.2 Solution ... 16	

4.6 Code Signing .. 16	

4.7 Testing .. 16	

4.7.1 The Problem .. 16	

4.7.2 Solution ... 16	

5 Results .. 18	

5.1 Background Application ... 18	

5.2 Connectivity ... 18	

5.3 Registration to mBlox Network .. 18	

5.4 Security ... 19	

5.5 Blackberry Push .. 19	

5.6 Location .. 19	

5.7 File access .. 20	

5.8 Testing .. 20	

5.9 Environment and Tools ... 20	

6 Conclusions .. 21	

6.1 Feasibility of port ... 21	

6.1.1 Core .. 21	

6.1.2 User interface .. 21	

6.2 Discussion .. 22	

6.2.1 Design ... 22	

6.2.2 Implemented utilities ... 22	

6.2.3 Support .. 22	

6.2.4 Documentation .. 22	

6.2.5 Simulator ... 22	

6.2.6 Tools ... 22	

6.3 Further development ... 23	

6.4 Summary .. 23	

7 References .. 24	

7.1.1 Source criticism ... 24	

7.1.2 References .. 24	

8 Terminology .. 25	

1

1 Introduction

1.1 Background
The mBlox Device Software, MDS, is a piece of software that is included into
a mobile device application and it takes care of the communication between
the device and the mBlox network, Mnet (internal network to handle
communications with the phone), and thereby exposing an API, Application
Programming Interface, on the Internet to access resources on the device. Web
developers can then develop applications and services that access these
resources in the same way independently of what operating system the device
is using. This makes it much easier for the developers because they don’t have
to research on how to do all things, like connecting and encryption on each
platform and this speeds up the development. This is the power of the MDS.
An example of an application that uses the MDS library could be an
application that handles bookings for events. When there is a new event
available the web application pushes a message to the device that downloads
information about the event and then lets the user see that there is a new event
available.

MDS is available on the Android, Symbian and the iOS platforms. Blackberry
is seen as an important platform to broaden the install base for MDS. The
product is aimed for third party developers, mostly other companies as it
requires a subscription to use the mBlox infrastructure.

Figure 1 Schematic of the current MDS system. The plan is that Blackberry Device
should be added to the picture. (Picture from Mashmobile Developer site [5])

1.2 Mashmobile
The employer of this thesis is Mashmobile, it is a company in Lund owned by
mBlox. There is about 20 people working in the Lund office and they are
stationed at the Ideon Science Park in Lund.

2

Mashmobile offers a solution of a push system that is used in the same way on
multiple platforms. This means that developers can develop an application
running on a web-server who instantiate a push-message to the Mashmobile
network, referred to as the mBlox network later in the report. The Mashmobile
Network then sends out that push-message to devices, independently of what
operating system that is used on the device.
mBlox is a company that specialises in infrastructure that allows companies to
send SMS to their customers, like advertisement campaigns or information
messages, to a large number of telephones.

1.3 Purpose and Goal
The goal is to study the current MDS implementations and then study the
Blackberry SDK to see how the MDS can be designed and implemented on
the Blackberry platform. If there is time available then a proof of concept
software is to be implemented.
As Blackberry is such a large platform it is seen as a potential candidate to
expand the MDS installation base and to reach more customers.

1.4 Problem Formulation
Today the mBlox Device Software is available on the Android, the iOS and
the Symbian platforms. As Blackberry is one of the most used operating
systems for Mobile Smart-phones it is seen as an important platform to
broaden the install base for MDS.

Is it feasible to port the Android version of MDS to the Blackberry
Platform?

Here are some of the areas that might become problematic and which needs a
more thorough investigation.

• Secure communications.
Because the communication with the mBlox Network is via the Internet
people might listen to what we have to say. To prevent this the mBlox
network uses TLS as its transport encryption. This means that a working
version of the MDS for Blackberry needs to support TLS in order for
the mBlox Network to accept the communications.

• Connectivity.
As stated above, the communication with the mBlox Network is via the
Internet and as such the MDS needs to be able to communicate via the
internet. An investigation on how that is done on the Blackberry
platform is needed to get a working version of the MDS.

• Background applications.

3

It is important to be able to maintain a connection to the mBlox
Network even if the application is closed, otherwise the device would
not be able to receive any messages from the mBlox Network when the
user exits the application. This needs some investigation to if and how
that is possible to achieve on the Blackberry Platform.

• Blackberry Push
The Blackberry push is a service provided by Research in Motion, the
developers of the Blackberry platform, which lets developers send
messages to devices. A study must be made to see how the Blackberry
Push Service can be incorporated into the MDS.

1.5 Limitation
The implementation of the Blackberry version of MDS is just a proof of
concept solution. While the aim of the port is to examine how the MDS can be
designed and implemented on the Blackberry platform not everything might
be optimally implemented for the platform.

1.6 Method of work
The method of work was not any typical project model, like SCRUM or XP.
Because I worked alone I had the freedom to do whatever I wanted and as
such I spent a lot of time looking at the Android code, drawing up models of
how it works and trying to find a way that was doable on the Blackberry
Platform. An overview of the work was that the first weeks where spent
learning how the MDS works, learning the Mnet structure and learning how
the Blackberry platform is designed. After that the porting began, with an
analysis of each section on the Android platform and an analysis of how it
would work on the Blackberry platform.

1.7 The report
This report will describe how the Blackberry platform works, how the MDS
works and what kind of issues a developer might face when trying to port an
existing application from Android to Blackberry.

4

2 Background

In this chapter the systems involved will be presented.

2.1 Blackberry
The thesis is about the feasibility of porting an existing system for Android to
the Blackberry platform, to do this an introduction to the Blackberry platform
is needed. This part will describe the Blackberry platform in short.
2.1.1 Description
The Blackberry platform is a mobile device platform developed by Research
in Motion, RIM. They develop both the closed source operating system,
Blackberry OS, and the devices on which the OS runs. It was originally
designed to be used by enterprises so they could read emails and check their
calendar on the device. With the help of the Blackberry infrastructure
enterprises were able to set up servers that pushed out (explained in chapter
2.5) new email, calendar events and tasks to the devices. Most of the newer
Blackberry devices have most of the standard functions of a modern smart
phone like GPS, Wi-Fi and camera. One feature that might interest the
ordinary customer is Blackberry Messenger, which is a messaging application,
much like MSN or Google Talk, the difference is that all messages goes
through the Blackberry infrastructure and it is free to use for anyone with a
Blackberry device and a Blackberry Data Plan. Other than this the Blackberry
platform does not offer anything exceptional for the ordinary customer. For
the enterprise customer there are many features that might be interesting.
More on that in chapter 2.1.3.
On the Blackberry platform all applications are written in Java, they are built
upon the Java Micro Edition.
As Blackberry is a closed source platform much of the technology that is used
to build the platform is unknown for the public. This means that the major
technical information is known only to the developers at RIM.
2.1.2 Integration
One of the advantages of the Blackberry Platform is that it lets developers
integrate their applications with the applications that Blackberry provide. For
instance a developer can access the messages application which lets them add
messages to the device which will let the user get messages in the same
application, independent of what application sent the message. This makes the
developer able to develop applications that really feel like a natural part of the
operating system.

5

Figure 2 Shows the Blackberry Infrastructure from an Enterprise Customers and a
Regular Customers view.

2.1.3 Blackberry Enterprise Server
The Blackberry Enterprise Server, BES, is a local server that enterprises can
use to connect their Blackberry Devices to [8]. The BES connects to existing
email services, like Microsoft Exchange or IBM Lotus Domino, and pushes
emails and calendar information to the devices. The BES also has good
security features which lets an administrator to set what kind of applications a
device can use, the administrator can even wipe all information on the device
remotely if a device is lost. This is one of the features that makes the
Blackberry platform so widely used in corporations across the world.
2.1.4 Blackberry Internet Service
The Blackberry Internet Service, BIS, is a kind of Enterprise Server but for
non enterprise customers. It lets a user connect up to 10 email accounts and
have the Blackberry Internet Service push new messages to the device.
To use the Blackberry Internet Service a special data plan is needed from the
wireless service provider.
2.1.5 Blackberry PIN
All Blackberry devices have a unique 8 digit hexadecimal pin number. These
are used as unique identifiers for the devices and can be used to send messages
between devices and for the BIS/BES to address push messages.

6

2.2 mBlox Device Software
This part will describe the MDS in short.
2.2.1 Description

Figure 3 An overview of the current MDS and the mBlox API. The plan is that
Blackberry Device should be added to the picture. (Picture from Mashmobile Developer
site [5])

Essentially MDS is a library that is included into mobile device applications
and the MDS will then take care of communications with the mBlox Network
and thereby exposing an API on Internet to access resources on the device.
Web developers can then develop applications and services on the web that
access resources on devices in the same way independently of operating
systems running on the device. As seen in Figure 2 the developer only needs
to provide with an application for the web (the left square) and one or more
applications for the devices. The mBlox API handles the communication
between them with an easy API for the developer. In the example with the
events manager, the developer would develop an application that runs on a
web server (provided by the developer). The web application communicates
with the mBlox API telling it when a new event has been added. The mBlox
API then sends out a message to the registered devices to notify the user about
the new event. Of course the developer needs to implement an application for
each platform that are to be supported, but the simple API from mBlox makes
the development easy and the web application can be exactly the same. This is
the advantage of the mBlox Device Service.
More information about the MDS is found in chapter 3.

2.3 mBlox Web API
The mBlox web API is the API developers use when their web applications
need to connect to devices. This API is what communicates with the MDS on
the devices and it is this API that third party developers will use to address
devices and to get resources of the devices. This runs on the mBlox servers so

7

there is no need to look into this for this thesis as the communication between
the MDS and the Web API is the same independent of what platform the MDS
runs on.

2.4 Blackberry and Android
Since a study will be made of the already existing Android platform
implementation of the MDS the following chapter will explain the Java
Standard Edition, which Android uses, and the Java Micro Edition, which
Blackberry uses.
2.4.1 Java Micro Edition
The Java Micro Edition, Java ME, is a special version of the Java platform
designed to be used on devices with low memory and CPU capacity. It is
based on the Java 1.3 platform.
2.4.2 Java Standard Edition
The Standard Edition of the Java platform, Java SE, is normally used for
developing Java applications to a desktop. The current version (May 2011) is
1.6.
2.4.3 Difference between Java ME and Java SE
One of the differences between the Java Micro Edition platform and the Java
Standard Edition platform is that the Standard Edition has a lot more libraries
implemented than the Micro Edition. The entire concurrent package and most
of the utilities package is missing from the Java ME libraries. This means that
a developer who wishes to use those libraries will have to implement and test
them themselves, this makes developing for the Micro Edition slower,
especially if the developer is more used to the richer libraries of the Standard
Edition.

One example of this is that a commonly used code snippet:

ArrayList<String>	
 list	
 =	
 new	
 ArrayList<String>();	

	

It can not be done in Java ME because the class ArrayList isn’t implemented.
Also the use of generics, <String> in the example above, wasn’t introduced in
Java until version 1.5 which means that it isn’t available in Java ME. This
means that all lists contains arbitrary objects which has to be cast into the
preferred object type when used. This means that there is no check when a
developer puts some data into the list to what type of object it is. If a
developer has control this should not be any issues, but as the MDS is a library
designed to be used by third party developers it has to be specified clearly in
order to not cause confusion.
The Iterator is not implemented in Java ME either, for the standard
Vector class, which is similar to the ArrayList, there is a elements()

8

method which returns an Enumeration which contains the elements. The
Enumeration class is a bit more clumsy to use than the more refined
Iterator. Also RIM encourages the developers to not overuse the
Enumeration because it can be slow in certain situations.
2.4.4 Android API
The Android platform uses the Java SE platform plus additional libraries for
its applications. The extra libraries include packages such as android.os and
android.view. The android.os provides basic operating system
functions, like inter-process communication, and android.view	
 provides
basic user interface classes. [6]
2.4.5 Blackberry API
The Blackberry platform uses the Java ME platform plus additional libraries
provided by RIM for its applications. As with Android these packages handles
basic operating system functions and user interface capabilities.

2.5 Push Technology
Push technology is a technology where a server sends a message to a client
when there is new content, instead of the client polling, asking, the server with
fixed intervals. This technology makes a client get the data at the same
moment it is made available on the server instead of the possible waiting time
when using poll technology.
One common way to implement push technology is to open a connection to a
server and keep it open. When reading from a stream with no content, at least
in Java, the thread will wait until there is any data available and if the server
waits to send data until it becomes available it can be used as a push message.
A lot of common push applications use this solution, like the Apple Push
Notification Service [9] and Push email [10].
Both Android and Blackberry has build in support for their respective push-
technology. In Blackberry a developer can incorporate the Blackberry Push
Service into their applications to send push-messages to the phones through
the Blackberry Infrastructure. In Android the technology is called C2DM and
a developer can incorporate that into their application to send push-messages
to the devices via the Google Infrastructure. The problem is that all systems
have different solutions so a developer needs to learn them all if they are to be
used. This can be a bit tricky and would take a lot of time for a developer to
adapt their web-application to handle all the different solutions provided by
each platform.

9

3 Study of the mBlox Device Software

The MDS is, as mentioned before, a library that a developer includes into their
application to expose an API on the internet so that a web application can
access resources on the device. It is available for the platforms Symbian, iOS
and Android. Because the Blackberry platform is so similar to the Android
platform a study will be done on the Android implemented version.

Figure 4 This shows some uses of the MDS. (Picture from Mashmobile Developer site
[5])

3.1 An application using MDS
An example of an application using MDS could be a store, which sells bikes.
They could have an Android and an iPhone application using the MDS. When
the store get a new special offer they can send it out the phones which has this
application installed. In this way they can send out special offers to people
who want the special offer.
They could also add functionalities like competitions, like a photo
competition. Take a picture where a user rides a bike in an extreme way and
then the MDS could send that picture to the stores web server automatically.
The store can then decide who has the best picture and give out the price. All
this can be done with minimal effort from the store because the MDS handles
the things like sending out the message with the competition rules to the
devices, and when a user takes the photo it will automatically upload the photo
to the store. All this can easily be done with devices that are running multiple
operating systems. This is one advantage of the MDS.

10

Figure 5 An overview of the flow of communication between a web application and the
MDS. (Picture from Mashmobile Developer site [5])

3.2 RichPush Plug-in
This is a plug-in for the MDS that is used to push messages to the phone that
should be activated at a certain time, or in a certain location. It can be used to
let customers know about certain special offers in certain places or to notify
them about an event that is starting at a certain time. This plug-in also lets
developers analyze the push messages with aspects like viewing time of
messages and number of devices who downloaded and read a message.

Figure 6 Shows how a developer gets real-time feedback. (Picture from Mashmobile
Developer site [5])

3.3 Android version
Both Android and Blackberry applications are written in Java, which means a
lot of the code, can be reused with the same design and only slight
modifications to the syntax. The MDS library handles the connection to Mnet,

11

it also handles everything that has to do with security and encryption, like
storing certificates.

Figure 6 An overview of the flow of communication between a web application and the
MDS. (Picture from Mashmobile Developer site [5])

The MDS is designed to be simple for a third party developer to get started
using the MDS, and has extensive documentation on the mBlox developer
website. The MDS library has a number of pre-made plug-ins that a developer
can use in their application. Example of plug-ins are plug-ins that offer the
ability to manage Contacts on the device, manage files on the device and get
the location of the device. A developer can also develop their own plug-ins,
with the help of an easy and powerful interface. This enables developers to
create their own, very specific, and very powerful plug-ins that fit their
purpose exactly. The advantage of the MDS is that the web interface can be
the same independent of what OS the device is using, as long as that OS is
supported by MDS.

12

Figure 7 Schematic figure of how a mobile application use the MDS. (Picture from
Mashmobile Developer site [5])

Things usable from the Android version with minimum changes were the
Connectivity logic, with the different registration/connection phases and the
retry logic since most of the code is pure java. Also the encoders and decoders
for the Mashmobile Network Protocol, which is the protocol used for
communicating between the Mnet and the MDS designed specifically for this
system by Mashmobile, could be reused without much change. Things that
need to be designed specifically for the Blackberry platform includes setting
up the sockets for communication and setting up security for the
communication. Also everything that saves data to the device needs some
changes to work on the Blackberry platform because the two platforms have
different ways of saving data. The Android version allows developers to store
data in, what is called, the Shared Preferences, in the same way as the
Blackberry version allows developers to store data in Persistent Objects. They
are quite similar in functionality, the Shared Preferences in Android lets a
developer store the data types: Boolean, Float, Integer, Long, String. The
Persistent objects in Blackberry lets the developer wrap any of the data types
in other objects, so a developer can store objects, like lists and such. This is a
bit more powerful than the Android version.

13

4 Study of the Blackberry platform

The following chapter is a deeper study of the Blackberry platform and will
address some of the main concerns of this port and the possible solution/s.

4.1 Background application
4.1.1 The problem
For the MDS to work it would need to handle background processes, like
keeping a connection alive while being able to use other applications. The
connection should not be lost every time another application is used. That
would require a lot of data to be unnecessarily sent in the connection phase
because the TLS handshake sends quite big keys back and forth, also the Mnet
sends quite a lot of data upon login.
4.1.2 Solution
Luckily the Blackberry Platform supports applications to be run in the
background, in fact, RIM encourages the developers to have their applications
running in the background to let them handle events like push events. This
speeds up the start of the application because it just have to be placed in the
foreground. It lets the application download content before the user needs it,
making the application able to change icons for certain events and making the
user experience feel much faster and smoother.
The Blackberry Platform also has functionality to let an application start when
the device is powered on for that always-on experience.

4.2 Connectivity
4.2.1 The problem
The whole point of the MDS is to expose an API to access resources on your
device and in order for that to work a connection to the mBlox Network is
needed.
4.2.2 Solution
The connection to the mBlox network can be done by using the Connector
class provided by Java ME. It supports a lot of different kinds of connections,
from file connections to http- and socket connections. To get a working
connection using a Blackberry Device or the Blackberry simulator the
developer must define how to connect to the server. There are a couple of
ways this can be done and it is up to the developer to see what kind of
connection is available and choose the one that suits the applications needs
best. Here are some examples of connection methods:

• Connect through the Blackberry Internet Service is done by appending
”;deviceside=false” to the url.

14

• Connect directly via TCP/IP to a server is done by appending
”;deviceside=true” to the url.

• Connect via Wi-Fi is done by appending ”;interface=wifi” to the
url.

For this project, as the simulator was used, the second and third,
“;deviceside=true” and “;interface=wifi”, was used because the
simulator cannot connect to the BIS and to connect to internet from the
simulator a faked Wi-Fi connection is needed.

4.3 Registration to Mnet
4.3.1 The problem
To use the Mnet the device needs to be registered within the Mnet. The device
needs a secure way to talk to the registration server to retrieve its certificate.
4.3.2 Solution
This is done using HTTPS and is handled by a special server inside the Mnet.
Part of the registration process is getting a certificate from a special server
inside the Mnet. The server issues a new certificate to each new device that
connects and since the simulator reset on every boot the registration was
mocked during testing in order not to waste too many certificates.

4.4 Security
4.4.1 The problem
The Blackberry OS has built in support for communication with TLS but it
doesn't support the use of client authentication, which is a way for a server to
identify and trust the client. This was a big concern because the Mnet requires
the clients to authenticate themselves. An alternative to the Blackberry
implemented communication was needed.
4.4.2 Solution
To solve this problem the open source library Bouncy Castle [12] was used.
This made it possible to use TLS with client authentication. One key part of
the security is the handshake, where the parties exchange their certificates and
prove they are who they say they are. The device has a public key, certificate,
from the server already stored and when the device connects to the server it
matches that certificate with the certificate that the server sends. It also has a
public and private key which it uses to identify itself to the server. The TLS
handshake looks like the following:

• The client sends a Client Hello to the server.
• The server responds with a Server Hello.
• The server sends its Certificate which essentially is its public key.
• The server requests the Client Certificate.

15

• The server sends a Server Hello Done.
• The client responds with its Certificate which essentially is its public

key.
• The client sends a Client Key Exchange with a secret that the client

computes with the servers public key.
• The client sends a Certificate Verify with a message computed with the

clients private key.
• The client sends a Change Cipher Spec which is an encrypted message,

the server decrypts and verifies it.
• The server sends a Change Cipher Spec which the client decrypts and

verifies.
• The handshake is now completed, all continued communication is

encrypted.

Figure 7 Chart visualizing the TLS Handshake

16

4.5 Blackberry Push
4.5.1 The problem
A customer might not want their devices to be connected to the Mnet at all
times, maybe they have low battery at a time and closes the connection, then
they would manually need to reconnect at a later time if they still want the
content from the Mnet. There needs to be a way to wake the device up and tell
it to connect to Mnet without the user having to do it manually.
4.5.2 Solution
This can be solved by using the Blackberry Push Service [2]. This service is
offered by RIM and lets a developer send data to a device through the
Blackberry Internet Service. In this case the Blackberry Push could be used to
wake the device up and tell it to connect to the mBlox Network.
The Blackberry Push Service can be used either through the public BIS or
through an enterprise BES. If it is used with a BES all devices connected to
that BES can be addressed and if it is used with the BIS all devices registered
to receive push-messages from a specific application can be addressed. To use
the Blackberry Push Service through the BIS you have to sign up at the RIM
website. Also to test out the Blackberry Push Service a real device must be
used because a simulator cannot connect to the BIS.
When a Push Message is sent it is addressed to the devices unique Pin-
number, this allows the BIS or BES to know what device to send the message
to and the Push Message can contain up to 8 kb of data.

4.6 Code Signing
To control the usage of sensitive API’s RIM has restricted the access to some
of their API’s to registered developers [3]. To register, a developer signs up to
RIM and pays a small fee to get Code Signing Keys which then are used to
sign any application that uses any of the restricted API’s.
Some examples of restricted API’s are the ones that gather information about
the device, the ones that reads/writes data to the devices storage and the ones
that handles encryption/decryption.
The code signing keys are not needed to test the application on the simulator.

4.7 Testing
4.7.1 The Problem
How does a developer know when an algorithm behaves right and how does
the developer know that future changes does not break the functionality?
4.7.2 Solution
A developer can use automated Unit testing that runs after each change to
assure that the functionality of the code is right and that it remains right after
changes. This can be done on the Blackberry Platform but it does not support
well known test frameworks such as JUnit or TestNG. However there are

17

some frameworks a developer can use that are run as an application on the
device or the simulator. This means that the framework creates a GUI on the
device or simulator that shows the test results. This makes it harder to have
automated test cases because all tests must be run as an application on the
device and as such cannot be run automatically when building the package for
example.

18

5 Results

In the following chapter the results and the chosen solutions for the points in
Chapter 4 are presented.

5.1 Background Application
As mentioned the Blackberry Platform supports applications being run in the
background, also known as multitasking. This means that an application can
be run in the background handling the connection to the Mnet and have one
application with a Graphical User Interface, which shows the information to
the user. A problem with having two applications running is that
communication between the processes can be a bit tricky because they are two
separate applications, this is solved by using Global Events.
Global Events are events that an application sends out on the device allowing
any application listening to intercept and read the event. This makes it easy to
implement communication between a background application and a
foreground application. However there might be a security risk if a developer
wants to send secret information, because anyone can develop an application
that listens to all global events. A more secure way would be to store the
information on the device, in what RIM calls the Runtime Store. That is more
tricky to implement, but it would make it harder for other developers to get the
information. For our purpose Global Events were used because the MDS only
sends out information like “Connection Finished” and such, and that is not
very secret.

5.2 Connectivity
In the early development the connection was mocked, a fake connection was
implemented, to speed up development and not having to fix all steps at the
same time. With a mocked connection the developer can predefine what the
server should respond and therefore the development of the different stages of
connection can be tested individually. When the connection felt stable enough
a local Mnet was setup on the developer machine, it was configured not to use
any encryption or authentication, this made testing the connection a lot easier
and faster. When the connection worked properly a real developer server was
used instead, it was configured to use the right kind of encryption,
authentication and registration.

5.3 Registration to mBlox Network
Registration to Mnet was straight forward because the HTTPS connection is
supported by default by the Blackberry Platform. It was just a matter of
formatting the request right and send it to the right URL. After that the only
concern is saving the certificate in a secure enough way in the device. This

19

was done by using a functionality called Persistent Store with Controlled
Access. This allows only applications signed with the developers Code
Signing Keys to access the data and makes it quite safe for normal users. Of
course if a user connects the phone to a computer and hacks into the file
system they can access the certificates, but even if they get a hold of the
certificates the only thing they can do is to trick the Mnet that they are a
device, and they will get push messages.
As mentioned before the registration was mocked during testing to prevent
retrieving too many certificates from the registration server.

5.4 Security
Using the Bouncy Castle library meant that the problem with client
authentication could be solved without having to implement the entire TLS
protocol and handshake from scratch. Also since this is security related,
implementing these features would have required some extensive testing to
guarantee security. These things were estimated to be handled by the Bouncy
Castle library. The documentation of the library was scarce and debugging
was slowed down because the library only sent out an Internal Error instead of
the real exception. The main problem with getting the communication working
was to get the public and private keys in the right format for use with the
library. The problem was that certificates were represented by the Certificate
object and getting the data into that object was not always that easy. The same
problem was that the private key to the certificate had to be represented by the
class AsymmetricKeyParameter, but that wasn’t really specified how to
get the private key into that object. But after some trial and error the keys
finally got into their right objects and the connection could be established.
Verifying that the connection is secure enough was not done, partly because
the lack of knowledge about testing secure communications and partly
because we figured that if the server accepts the TLS handshake it is correct,
otherwise there might be a real security issue on the server.

5.5 Blackberry Push
The Blackberry Push service was not tested in this project, mostly because to
test it, a real device with a Blackberry Data Plan was needed and that wasn’t
available. But in theory the Blackberry Push Service could be used to send any
data to the device and an application could be used to listen to those push
messages and start the connection to Mnet when a message is received.

5.6 Location
One part of the Push Plug-in for MDS is that a pushed message is activated
around a certain location. For example, this could mean that if a user arrives
into a special town the application activates a message with special offers for

20

that town. This is supported by the Blackberry platform without any hassle.
RIM has implemented a Proximity Listener that alerts when the device comes
within the proximity of a specified location.

5.7 File access
Another plug-in for the MDS is used to manipulate files on the device, it can
be pushing down a picture to the device or download a picture from the
device. The Blackberry platform supports reading from the SD-Card and lets a
developer manipulate some files on the device.

5.8 Testing
Most of the testing was made on the simulator without any unit testing and the
testing was only done to prove that the code that was written could work. This
was because of lack of automated test frameworks. Also most of the testing is
only done as a proof of concept, every case is not tested and therefore there
still might be bugs in the system.

5.9 Environment and Tools
Most of the development for this thesis was made on laptop running Windows
Vista Business, using the Eclipse 3.6 IDE with the Blackberry Plug-in. The
Blackberry 9800 Simulator was used to test the software.

21

6 Conclusions

Since the platforms are very much alike I was able to start working on a proof
of concept solution early. Over all the result of the Proof of Concept
implementation was successful, all the parts were implementable on the
Blackberry platform. Here is the list from 1.3 and a short note about them.

• Secure communications – This was done by using the Bouncy Castle
library because the Blackberry libraries didn’t handle client
authentication.

• Connectivity – This was done by using the built in libraries. They all
supported socket connections and with the help of the Bouncy Castle
library the connection was encrypted as well.

• Background Application – This was done using the built in support for
background applications in the Blackberry platform.

• Blackberry Push – This was not done, but it is possible to send any 8 kb
of data through the Blackberry Push service.

6.1 Feasibility of port
Since both platforms are quite alike the feasibility of a port from Android to
Blackberry is very much possible. This made me be able to do a complete
proof of concept system of the MDS.
6.1.1 Core
Porting the core from the Android platform to the Blackberry platform was
quite straight forward because both the platforms use Java for their
applications. They both allow true multitasking and they are designed to have
applications running in the background polling for information. Connections
to the Internet behave in roughly the same way, the developer opens a Socket
to a server and then opens Input Streams and Output Streams via that socket.
6.1.2 User interface
Obviously one of the biggest differences of the platforms is the User
Interfaces. Blackberry has only been using touch screen navigation since
version 4.7 while Android was designed with touch screen navigation from the
beginning, many Blackberry devices still don’t use touch screens [7]. But as
the MDS is a background process only meant to connect to the Mnet it doesn’t
have an UI and only a simple test UI was developed. The test application just
showed the status of the connection and it also had the ability to show
messages that were pushed to the device.

22

6.2 Discussion
6.2.1 Design
Even though my previous knowledge about the Blackberry platform was next
to none the porting of the MDS went smooth, this has much to do with the
Java platform used in both Android and Blackberry. Even though Java ME
and Java SE differs in some points they are very much alike in many aspects.
They both are object oriented which makes the design very much the same
between the platforms. Also the syntax is the same, with the exception of
some newer features in Java SE, like “for each”-statements.
6.2.2 Implemented utilities
It also turned out that Mashmobile already had used Java ME before and there
were a lot of implemented utilities already, which were implemented to be like
their Java SE counterparts. This made the development much easier and sped
up the process of porting. Over all everything went according to plan and after
just a few weeks there was a foundation to build the new Blackberry version
of MDS upon.
6.2.3 Support
Since Java is one of the most used programming languages in the world if you
get stuck somewhere there is probably more people out there who have been
stuck on the same problem and someone else who has a nice solution. As for
the Blackberry specific problems the Blackberry Support Forums [4] were
quite helpful, though the developer base is not as large as on the Android
platform forums, and therefore it was a little harder finding solutions to some
problems than it would have been on a larger platform.
6.2.4 Documentation
Another point that slowed down development a bit was the lack of useful
documentation of the Blackberry API’s. RIM has made some documentation
although the explanations found there not always are very intuitive. Again,
here the support forums were helpful because it’s not just me who complains
that RIM has insufficient documentation in some packages.
6.2.5 Simulator
The simulator was another point of concern because sometimes it crashed with
a Java Virtual Machine exception, sometimes it just did not recognize eclipse
which meant difficulties to use the debugger and other times it just refused to
start until the computer was rebooted.
6.2.6 Tools
To test that the MDS was working properly HTTP-requests needed to be sent
to the device to see if it responded. The tool used for that was Fiddler2, it’s an
easy tool to use to send custom HTTP-requests and offers an easy way to
examine the response.

23

6.3 Further development
Further development of the MDS would be to do some proper testing, the
testing that has been done so far is only to prove that it can work. Also some
more thoughts about the bearer management (handling internet connectivity
when changing from WiFi to 3G for example) should be done because that is
also done mostly as a proof of concept. Because the MDS is only a library a
proper application that uses the MDS might be a good idea to really show off
the potential of the system.
To get a good library that third party developers want to use, some more of the
plug-ins might need to be implemented too because the only plug that was
developed was the Rich Push Plug-in that handles push-messages. Also since
it is a library developed to be used by third party developers, proper
documentations of the exposed API’s is necessary for a third party developer
to appreciate it.

6.4 Summary
The proof of concept system can be used as a library by third party developers,
it has the same functionality as the MDS for Android, though it lacks most of
the plug-ins and it still might have bugs in it because it is not tested very
much. But the Rich Push Plug-in that is used to push out messages that are
activated at a certain time is implemented and working, though this is not
tested enough and might still have some bugs in it.

This has been done:

• Connectivity is working
• Security is working
• Background application is working
• A proof of concept system is working

This needs to be done:

• Proper testing
• Blackberry push needs to be implemented
• Develop a real application to show of the library

24

7 References

7.1.1 Source criticism
Most of these references are to the Research in Motion website. I have to
assume the information on these are correct. The same goes to the Android
and Mashmobile developer websites.
The Apple Push Notification Service [9] was made on a WWDC, Apple
developer conference, and as such I do not have the reference to the exact
announcement, just the news of the announcement. The Apple developer site
does not explain any technical information about the service whereas on the
conference they explained shortly how it works.
7.1.2 References
[1] http://www.blackberry.com/developers/docs/6.0.0api/index.html (May

2011) Blackberry Java API Reference
[2] http://us.blackberry.com/developers/platform/pushapi.jsp (May 2011)

Blackberry Push Service website
[3] http://us.blackberry.com/developers/javaappdev/codekeys.jsp (May

2011) Blackberry Code Signing Keys website
[4] http://supportforums.blackberry.com/t5/Developer-Support-Forums/ct-

p/blackberrydev (May 2011) Blackberry Support Forums
[5] Mashmobile developer documentation. This is not public. Use here is

approved by Mashmobile.
[6] http://developer.android.com (May 2011) Android developer website
[7] http://us.blackberry.com/developers/choosingtargetos.jsp (May 2011)

Blackberry: Choosing target device OS
[8] http://us.blackberry.com/apps-software/business/server/full/ (May 2011)

Blackberry Enterprise Server website.
[9] http://www.engadget.com/2008/06/09/iphone-push-notification-service-

for-devs-announced/ (May 2011) Apple Push Notification Service
announced on Engadget.

[10] http://www.explainstuff.com/2009/06/17/what-is-push-email/ (May
2011) Information about Push Email .

[11] http://www.canalys.com/pr/2011/r2011013.html (June 2011) Mobile
Operating System sales 2010 Q4

[12] http://www.bouncycastle.org/ (June 2011) Bouncy Castle website.

25

8 Terminology

• API – Application Programming Interface (Page 1)

• BES – Blackberry Enterprise Server (Page 6)

• BIS – Blackberry Internet Service (Page 6)

• IPC – Inter Process Communications (Page 9)

• Java ME – Java Micro Edition (Page 8)

• Java SE – Java Standard Edition (Page 8)

• MDS – mBlox Device Software (Page 6)

• Mnet – mBlox Network (Page 1)

• RIM – Research in Motion (Page 5)

• TLS – Transport Layer Security (Page 15)

